Compare Darwin vs. IBM SPSS Modeler

Darwin is ranked 8th in Data Science Platforms with 8 reviews while IBM SPSS Modeler is ranked 12th in Data Science Platforms with 4 reviews. Darwin is rated 8.4, while IBM SPSS Modeler is rated 8.0. The top reviewer of Darwin writes "Empowers SMEs to build solutions and interface them with the existing business systems, products and workflows". On the other hand, the top reviewer of IBM SPSS Modeler writes "Automated modelling, classification, or clustering are very useful. Customer support is hard to contact". Darwin is most compared with H2O.ai and RapidMiner, whereas IBM SPSS Modeler is most compared with KNIME, Alteryx and IBM Watson Studio. See our Darwin vs. IBM SPSS Modeler report.
Cancel
You must select at least 2 products to compare!
Darwin Logo
369 views|71 comparisons
IBM SPSS Modeler Logo
9,774 views|7,454 comparisons
Most Helpful Review
Find out what your peers are saying about Darwin vs. IBM SPSS Modeler and other solutions. Updated: March 2020.
406,607 professionals have used our research since 2012.
Quotes From Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:

Pros
The most valuable feature is the model-generation. With a nice dataset, Darwin gives you a nice model. That's a really nice feature because, if we're doing that ourselves, it's trial and error; we change the parameters a little and try again. We save time by just giving the dataset to Darwin and letting Darwin generate a model. We find the models it generates are good; better than we can generate.In terms of streamlining a lot of the low-level data science work, it does a few things there.I liked the data checking feature where it looks at your data and sees how viable it is for use. That's a really cool feature. Automatic assessment of the quality of datasets, to me, seems very valuable.The key feature is the automated model-building. It has a good UI that will let people who aren't data scientists get in there and upload datasets and actually start building models, with very little training. They don't need to have any understanding of data science.Darwin has increased efficiency and productivity for our company. With our risk management team, there were models that took them more than three days to process each, only to see the outcome. Now, it takes minutes for Darwin to process the current model. So, we can have it in minutes. We don't have to wait three days for all the models to be tested, then make a decision.I find it quite simple to use. Once you are trained on the model, you can use it anyway you want.The solution helps with the automatic assessment of the quality of datasets, such as missing data points or incorrect data types.The thing that I find most valuable is the ability to clean the data.

Read more »

Automated modelling, classification, or clustering are very useful.A lot of jobs that are stuck in Excel due to the huge numbers of rows are tackled pretty quickly.It's very easy to use. The drag and drop feature makes it very easy when you are building and testing the streams. That's very useful.It makes pretty good use of memory. There are algorithms take a long time to run in R, and somehow they run more efficiently in Modeler.New algorithms are added into every version of Modeler, e.g., SMOTE, random forest, etc. The Derive node is used for the syntax code to derive the data.

Read more »

Cons
An area where Darwin might be a little weak is its automatic assessment of the quality of datasets. The first results it produces in this area are good, but in our experience, we have found that extra analysis is needed to produce an extra-clean set of data.The Read Me's and the tutorials need to be greatly improved to get customers to understand how things work. It might be helpful to have some sample data sets for people to play around with, as well as some tutorial videos. It was very hard to find information on this in the time crunch that we had, to see how it worked and then make it work, while interfacing with folks at SparkCognition.There are issues around the ethics of artificial intelligence and machine learning. You need to have a lot of transparency regarding what is going on under the hood in order to trust it. Because so much is done under the hood of Darwin, it is hard to trust how it gets the answers it gets.There's always room for improvement in the UI and continuing to evolve it to do everything that the rest of AI can do.The challenge is very big toward making models operational or to industrialize them. E.g., what we want to do is to make unique credit models for each customer. So, we are preparing the types of customers who we can try new credit models on Darwin. But, I see this still very challenging to be able to get the data sets so Darwin can work. At this point, we are working it to get the data sets ready for Darwin.The analyze function takes a lot of time.Something they are working on, which is great, is to have an API that can access data directly from the source. Currently, we have to create a specific dataset for each model.Our main data repository is on AWS. The trouble we are having is that we have to download the data from our repository to bring it into Darwin. It would be great if there was an API to connect our repository to Darwin.

Read more »

Customer support is hard to contact.It is not integrated with Qlik, Tableau, and Power BI.Expensive to deploy solutions. You need to buy an extra deployment unit.I understand that it takes some time to incorporate some of the new algorithms that have come out in the last few months, in the literature. For example, there is an algorithm based on how ants search for food. And there are some algorithms that have now been developed to complement rules. So that's one of the things that we need to have incorporated into it.The standard package (personal) is not supported for database connection.Unstructured data is not appropriate for SPSS Modeler.

Read more »

Pricing and Cost Advice
I believe our cost is $1,000 per month.The license cost is not cheap, especially not for markets like Mexico. But sometimes, you do have to make these leap of faith for some tools to see if they can get you the disruption that you are aiming for. The investment has paid off for us very well.In just six months, we calculated six million pesos that we have prevented in revenue from going away with another customer because of this solution. Thanks to Darwin, we didn't lose those six million pesos.As far as I understand, my company is not paying anything to use the product.

Read more »

When you are close to end of quarter, IBM and its partners can get you 60% to 70% discounts, so literally wait for the last day of the quarter for the best prices. You may feel like you are getting robbed if you can't receive a good discount.It got us a good amount of money with quick and efficient modeling.

Read more »

report
Use our free recommendation engine to learn which Data Science Platforms solutions are best for your needs.
406,607 professionals have used our research since 2012.
Ranking
8th
Views
369
Comparisons
71
Reviews
7
Average Words per Review
1,581
Avg. Rating
8.4
12th
Views
9,774
Comparisons
7,454
Reviews
4
Average Words per Review
339
Avg. Rating
8.0
Top Comparisons
Compared 55% of the time.
Compared 45% of the time.
Compared 17% of the time.
Compared 16% of the time.
Also Known As
SPSS Modeler
Learn
SparkCognition
IBM
Overview

SparkCognition builds leading artificial intelligence solutions to advance the most important interests of society. We help customers analyze complex data, empower decision making, and transform human and industrial productivity with award-winning machine learning technology and expert teams focused on defense, IIoT, and finance.

IBM SPSS Modeler is an extensive predictive analytics platform that is designed to bring predictive intelligence to decisions made by individuals, groups, systems and the enterprise. By providing a range of advanced algorithms and techniques that include text analytics, entity analytics, decision management and optimization, SPSS Modeler can help you consistently make the right decisions from the desktop or within operational systems.

Buy
https://www.ibm.com/products/spss-modeler/pricing
 
Sign up for the trial
https://www.ibm.com/account/reg/us-en/signup?formid=urx-19947


Offer
Learn more about Darwin
Learn more about IBM SPSS Modeler
Sample Customers
Information Not Available
Reisebªro Idealtours GmbH, MedeAnalytics, Afni, Israel Electric Corporation, Nedbank Ltd., DigitalGlobe, Vodafone Hungary, Aegon Hungary, Bureau Veritas, Brammer Group, Florida Department of Juvenile Justice, InSites Consulting, Fortis Turkey
Top Industries
VISITORS READING REVIEWS
Comms Service Provider64%
Financial Services Firm10%
Retailer6%
Software R&D Company4%
REVIEWERS
Financial Services Firm24%
Manufacturing Company14%
University14%
Transportation Company10%
VISITORS READING REVIEWS
Software R&D Company22%
Comms Service Provider12%
Financial Services Firm10%
Government10%
Find out what your peers are saying about Darwin vs. IBM SPSS Modeler and other solutions. Updated: March 2020.
406,607 professionals have used our research since 2012.
We monitor all Data Science Platforms reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.