Compare OpenVINO vs. PyTorch

Cancel
You must select at least 2 products to compare!
OpenVINO Logo
752 views|594 comparisons
PyTorch Logo
99 views|75 comparisons
Most Helpful Review
Find out what your peers are saying about Microsoft, TensorFlow, OpenVINO and others in AI Development Platforms. Updated: April 2021.
475,705 professionals have used our research since 2012.
Quotes From Members

We asked business professionals to review the solutions they use. Here are some excerpts of what they said:

Pros
"It reduces the required processing power on the CPU and GPU. With OpenVINO, you can run your normal algorithms and normal software on CPU, but don't require a huge amount of processor power. It is faster, and you have plenty of more resources for other jobs. It is easy to manage the software with OpenVINO. You can change the number of models or quotes. I can use five quotes for a model, or I can write a particular model with a quote. Management is easy without touching the software.""The features for model comparison, the feature for model testing, evaluation, and deployment are very nice. It can work almost with all the models.""The inferencing and processing capabilities are quite beneficial for our requirements.""The initial setup is quite simple."

More OpenVINO Pros »

"Its interface is the most valuable. The ability to have an interface to train machine learning models and construct them with the high-level interface, without excess busting and reconstructing the same technical elements, is very useful.""I like that PyTorch actually follows the pythonic way, and I feel that it's quite easy. It's easy to find compared to others who require us to type a long paragraph of code."

More PyTorch Pros »

Cons
"Their resolution time for certain kinds of issues could be better. I had a problem during the implementation, and it took them two or three months to resolve it. I wasted so much time. If it is a simple problem or implementation issue, they will provide the answers and solve it quickly, but if there are some problems with the product, it can take time.""It has some disadvantages because when you're working with very complex models, neural networks if OpenVINO cannot convert them automatically and you have to do a custom layer and later add it to the model. It is difficult.""The model optimization is a little bit slow — it could be improved.""At this point, the product could probably just use a greater integration with more machine learning model tools."

More OpenVINO Cons »

"There is not enough documentation about some methods and parameters. It is sometimes difficult to find information.""I would like a model to be available. I think Google recently released a new version of EfficientNet. It's a really good classifier, and a PyTorch implementation would be nice."

More PyTorch Cons »

Pricing and Cost Advice
"Specifically for our products, it was costly to use OpenVINO without using the OpenVINO hardware. This was because we had not used the same number of CPUs. We had reduced the CPU number, but we didn't reduce it too much. Therefore, the cost was more with OpenVINO, but the efficiency was also much higher. We didn't have any problems with CPU usage or memory usage. OpenVINO really helped us with these issues.""We didn't have to pay for any licensing with Intel OpenVINO. Everything is available on their site and easily downloadable for free."

More OpenVINO Pricing and Cost Advice »

"It is free.""PyTorch is an open-source solution."

More PyTorch Pricing and Cost Advice »

report
Use our free recommendation engine to learn which AI Development Platforms solutions are best for your needs.
475,705 professionals have used our research since 2012.
Questions from the Community
Top Answer: The inferencing and processing capabilities are quite beneficial for our requirements.
Top Answer: We didn't have to pay anything for Intel OpenVINO, everything was available on their site. All of their solutions, inference engines, and other model optimizations are all available for free. We… more »
Top Answer: The model optimization is a little bit slow — it could be improved. They should introduce some type of deep learning accelerator, like Jetson Xavier NX. There is a lacking in vehicle recognition —… more »
Top Answer: Its interface is the most valuable. The ability to have an interface to train machine learning models and construct them with the high-level interface, without excess busting and reconstructing the… more »
Top Answer: There is not enough documentation about some methods and parameters. It is sometimes difficult to find information.
Ranking
3rd
Views
752
Comparisons
594
Reviews
4
Average Words per Review
744
Rating
8.5
6th
Views
99
Comparisons
75
Reviews
1
Average Words per Review
304
Rating
8.0
Popular Comparisons
Learn More
OpenVINO
Video Not Available
PyTorch
Video Not Available
Overview

OpenVINO toolkit quickly deploys applications and solutions that emulate human vision. Based on Convolutional Neural Networks (CNNs), the toolkit extends computer vision (CV) workloads across Intel hardware, maximizing performance. The OpenVINO toolkit includes the Deep Learning Deployment Toolkit (DLDT).

We've built this course as an introduction to deep learning. Deep learning is a field of machine learning utilizing massive neural networks, massive datasets, and accelerated computing on GPUs. Many of the advancements we've seen in AI recently are due to the power of deep learning. This revolution is impacting a wide range of industries already with applications such as personal voice assistants, medical imaging, automated vehicles, video game AI, and more.

In this course, we'll be covering the concepts behind deep learning and how to build deep learning models using PyTorch. We've included a lot of hands-on exercises so by the end of the course, you'll be defining and training your own state-of-the-art deep learning models.

Offer
Learn more about OpenVINO
Learn more about PyTorch
Top Industries
VISITORS READING REVIEWS
Manufacturing Company35%
Comms Service Provider29%
Computer Software Company17%
Government3%
No Data Available
Find out what your peers are saying about Microsoft, TensorFlow, OpenVINO and others in AI Development Platforms. Updated: April 2021.
475,705 professionals have used our research since 2012.

OpenVINO is ranked 3rd in AI Development Platforms with 4 reviews while PyTorch is ranked 6th in AI Development Platforms with 2 reviews. OpenVINO is rated 8.6, while PyTorch is rated 9.0. The top reviewer of OpenVINO writes "Open-source, easy to integrate, and perfectly tailored to the Movidius chipset". On the other hand, the top reviewer of PyTorch writes "A highly user-friendly open-source machine learning library". OpenVINO is most compared with TensorFlow, Caffe, Microsoft Azure Machine Learning Studio and Google Cloud AI Platform, whereas PyTorch is most compared with .

See our list of best AI Development Platforms vendors.

We monitor all AI Development Platforms reviews to prevent fraudulent reviews and keep review quality high. We do not post reviews by company employees or direct competitors. We validate each review for authenticity via cross-reference with LinkedIn, and personal follow-up with the reviewer when necessary.